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Abstract� This work investigates the problem of permuting a sparse rectangular matrix into
block diagonal form� Block diagonal form of a matrix grants an inherent parallelism for the solu�
tion of the deriving problem� which has been recently investigated in the context of mathematical
programming� LU factorization and QR factorization� We propose bipartite graph and hypergraph
models to represent the nonzero structure of a matrix� which reduce the permutation problem to
those of graph partitioning by vertex separator and hypergraph partitioning� respectively� Besides
proposing the models to represent sparse matrices and investigating related combinatorial problems�
we provide a detailed survey of relevant literature to bridge the gap between di�erent societies� in�
vestigate existing techniques for partitioning and propose new ones� and �nally present a thorough
empirical study of these techniques� Our experiments on a wide range of matrices� using state�of�the�
art graph and hypergraph partitioning tools MeTiS and PaToH� revealed that the proposed methods
yield very e�ective solutions both in terms of solution quality and runtime�
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�� Introduction� Solution methods for various applications �e�g�� linear pro�
gramming �LP� problems� systems of linear equations� and least squares problems�
exploit the block�diagonal structure of a sparse matrix for coarse�grain paralleliza�
tion� In these methods� block diagonals give rise to subproblems that can be solved
independently and concurrently� whereas the border incurs a coordination task to
combine the subproblem solutions into a solution of the original problem� which is
usually not amenable to e�cient parallelization� The objective of this work is to en�
hance these decomposition�based solution methods by transforming the underlying
matrix into a block�diagonal form with small border size while maintaining a given
balance condition on the sizes of the diagonal blocks�

The target problem can be formally described as permuting rows and columns of
an M�N sparse matrix A into a K�way singly�bordered block�diagonal �SB� form�
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where P and Q denote� respectively� the row and column permutation matrices to
be determined� In ������ A�

kk � Bk is an Mk�Nk submatrix and A�
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Each row of the Mc�N border submatrix R � �R� � � � RK� is called a column�
coupling or simply coupling row� Each coupling row has nonzeros in the columns of
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at least two diagonal blocks� Hence� the objective is to permute matrix A into an SB
form ASB such that the number �Mc� of coupling rows is minimized while a given
balance criterion on the row and column dimensions of the diagonal block matrices is
maintained� The SB form in ����� is referred to here as the primal SB form� whereas
in the dual SB form it is the columns that constitute the border�

We also consider the problem of permuting rows and columns of anM�N sparse
matrix A into a K�way doubly�bordered block�diagonal �DB� form�
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In ���	�� A�
kk �Bk is an Mk�Nk diagonal submatrix� A�

Sk �Rk is an Mc�Nk sub�
matrix� and A�

kS �Ck is an Mk�Nc submatrix for k� �� 	� � � � �K� where M �Mc
PK
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and C ��CT
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K DT �T is called a coupling row and a coupling column� respec�

tively� The objective is to permute matrix A into a DB form ADB such that the
number of coupling rows and columns is minimized while a given balance criterion on
the row and column dimensions of the diagonal block matrices is maintained�

The literature that addresses this problem is very rare and recent� Ferris and
Horn ���
 proposed a two�phase approach for A�to�ASB transformation� In the �rst
phase� matrix A is transformed into a DB form ADB as an intermediate form� In
the second phase� ADB is transformed into an SB form through column�splitting
as discussed in Section ���� Our initial results of this problem were presented in
two conference papers ���� ��
� In ���
� we proposed the basics of our hypergraph
model and how to exploit this model to permute matrices to block�diagonal form�
In our subsequent work ���
 we proposed our graph models� Later Hu et� al ��	

independently investigated the same problem without spelling out the exact model
to represent the sparsity structures of matrices or the details of their algorithm for
permutation� In this paper� we present a complete work on the problem of permuting
sparse matrices to block�diagonal form� We consider permutations to DB form as well
as permutations to primal and dual SB form� provide a detailed survey of relevant
literature to bridge the gap between di�erent societies� investigate existing techniques
for partitioning and propose new ones� and �nally present a thorough empirical study
of these techniques�

Our proposed graph and hypergraph models for sparse matrices reduce the prob�
lem of permuting a sparse matrix to block�diagonal form to the well�known problems
of graph partitioning by vertex separator �GPVS� and hypergraph partitioning �HP��
GPVS is widely used in nested�dissection based low��ll orderings for factorization of
symmetric� sparse matrices� whereas HP is widely used for solving the circuit parti�
tioning and placement problems in VLSI layout design� Our models enable the use
of algorithms and tools for these well�studied problems to permute sparse matrices
to block�diagonal form e�ciently and e�ectively� Our contributions� however� are not
restricted to application of standard techniques to this problem� but we also propose
techniques to improve the state of the art in GPVS and HP� as well as techniques
that exploit the special structure of this problem�

In Section �� we show that the A�toADB transformation problem can be described
as a GPVS problem on the bipartite graph representation of A� The objective in the
K�way GPVS problem is to �nd a subset of vertices �vertex separator� of minimum
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size that disconnects the K vertex parts� while maintaining a given balance criterion
on the vertex counts of K parts� In this model� minimizing the size of the vertex
separator corresponds to minimizing the sum of the number of coupling rows and
linking columns in ADB �

There are two heuristic approaches� referred to here as direct and indirect ap�
proaches� for solving the GPVS problem� The direct GPVS approach directly aims
at a vertex separator on the graph� whereas the indirect approach �nds a vertex sep�
arator through graph partitioning by edge separator �GPES�� After �nding an edge
separator� the indirect approach takes the boundary vertices as the wide separator to
be re�ned to a narrow separator� hoping that a small edge separator yields a small
vertex separator� The approach adopted by Ferris and Horn ���
 falls into this class�

In Section �� we propose two greedy heuristics for indirect GPVS� The �rst one is
a new edge weighting scheme on the bipartite graph so that minimizing the weighted
edge cut through a GPES tool is expected to produce a wide vertex separator with
�better� quality for re�nement� The second one is a heuristic for �nding a good vertex
cover of a K�partite graph� This heuristic is used to �nd a wide�to�narrow vertex�
separator re�nement from the K�way partition produced by the GPES tool� The
vertex�cover model has been widely used for separator re�nement in nested�dissection
based symmetric matrix ordering� In Section �� we also show the �aws of the vertex�
cover model in separator re�nement�

In Section �� we propose a one�phase approach for permuting A directly into an
SB form� In this approach� a hypergraph model�proposed in an earlier version of
this work ���
�is exploited to represent rectangular matrices� The proposed model
reduces the A�to�ASB transformation problem into the HP problem� In this model�
minimizing the size of the hyperedge separator directly corresponds to minimizing the
number of coupling rows in ASB �

In Section ���� we brie�y discuss alternative circuit representation models pro�
posed by the VLSI community for circuit partitioning and placement� These alterna�
tive models can also be considered as e�orts towards using GP algorithms and tools
to solve the HP problem� However� the GPES�based HP models minimize the wrong
metric� that is minimizing the cutsize in GPES is only an approximation to minimiz�
ing the cutsize in HP� In Section ��	� we propose a GPVS�based model for solving the
HP problem through the net intersection graph representation of a given hypergraph�
The proposed model achieves a one�to�one correspondence between the cutsizes of
GPVS and HP� In Section ���� we display the matrix theoretical view of the proposed
model and show the close relation between the problems of permuting matrix A into
an SB form and permuting matrix AAT into a DB form� In Section �� we present a
brief overview on the state�of�the�art graph and hypergraph partitioning algorithms
and tools� Finally in Section �� we test the performance of our proposed models and
associated solution approaches on a wide range of large LP constraint matrices�

�� Applications� Block diagonal structure of a matrix grants an inherent par�
allelism for the solution of the deriving problem� In this section� we will exemplify
how to exploit this parallelism in three fundamental problems of linear algebra and
optimization� linear programming� linear equations� and least�squares�

Linear Programming� Exploiting the block�angular structure of linear programs
�LPs� dates back to the work of Dantzig ���
� when the motivation was solving large
LPs with limited memory� Later works investigated parallelization techniques �	�� ���
��
� The proposed techniques ���� ��� ��� ��
 lead to iterative algorithms� where each
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iteration involves solving K independent LP subproblems corresponding to the block
constraints followed by a coordination phase for coordinating the solutions of the
subproblems according to the coupling constraints� These approaches have two nice
properties� First� as the solution times of most LP�s in practice increase as a quadratic
or cubic function with the size of the problem� it is more e�cient to solve a set of small
problems than a single aggregate problem� Second� they give rise to a natural� coarse�
grain parallelism that can be exploited by processing the subproblems concurrently�
Coarse�grain parallelism inherent in these approaches has been exploited in several
successful parallel implementations on distributed�memory multicomputers through
manager�worker scheme ���� 	�� ��� ��
� At each iteration� the LP subproblems are
solved concurrently by worker processors� whereas a serial master problem is solved
by the manager processor in the coordination phase�

As recently proposed ���
� these successful decomposition�based approaches can
be exploited for coarse�grain parallel solution of general LP problems by transform�
ing them into block�angular forms� In matrix theoretical view� this transformation
problem can be described as permuting the rectangular constraint matrix of the LP
problem into an SB form as shown in ����� with minimum border size while main�
taining a given balance criterion on the diagonal blocks� Note that row and column
permutation correspond to reordering of the constraints and variables of the given
LP problem� Here� minimizing the border size relates to minimizing the size of the
master problem� The size of the master problem has been reported to be crucial for
the parallel performance of these algorithms ���� ��
� First� it a�ects the convergence
of the overall iterative algorithm� Second� in most algorithms the master problem is
solved serially by the manager processor� Finally� it determines the communication
requirement between phases� It is also important to have equal�sized blocks for load
balance for the e�ciency of the parallel phase�

It is worth noting that exploiting the block angular structure of the constraint ma�
trices is not restricted to linear programs and can be applied in di�erent optimization
problems ��	� ��
�

Linear Equations� In most scienti�c computing applications� the core of the com�
putation is solving a system of linear equations� Direct methods like LU factorization
are commonly used for the solution of nonsymmetric systems for their numerical ro�
bustness� A coarse�grain parallel LU factorization scheme ��	� ��
 is to permute the
square� nonsymmetric coe�cient matrix to a DB form as shown in ���	�� Notice that
diagonal blocks of the permuted matrix constitute independent subproblems� and
can be factored concurrently� Pivots are chosen within the blocks for concurrency�
Rows�columns that cannot be eliminated including those that cannot be eliminated
due to numerical reasons are permuted to the end of the matrix to achieve a partially�
factored matrix in DB form as�

����
L�U� U �

�

� � �
���

LKUK U �
K

L�� � � � L�K F

�
����

In this matrix� LkUk constitutes the factored form of A�
k �Bk after the unfactored

rows�columns are permuted to the end of the matrix� In a subsequent phase� the
coupling rows and columns� and unfactored columns and rows from the blocks are
factored� It is possible to parallelize this step with di�erent �and usually less e�cient�
techniques�
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We stated two objectives during permutation to DB form� First one is minimizing
the number of coupling rows and columns� which relates to minimizing the work for
the second phase� thus increasing concurrency� Our second objective of equal�sized
blocks provides load balance during factorization of the blocks�

Least Squares Problems� Least squares is one of the fundamental problems in
numerical linear algebra de�ned as follows�

min
x
k Ax � b k��

where A is an M�N matrix with M � N � QR factorization is a method commonly
used to solve least�squares problems� In this method� matrix A is factored into an
orthogonalM�M matrixQ and an upper triangularN�N matrixR with nonnegative
diagonal elements so that

A � Q

�
R
�

�

Then� we can solve for Rx � b� to get a solution� where b� is composed of the �rst N
entries of vector b�

Computationally� this problem is very similar to LU factorization� thus we can
use the same scheme to parallelize QR factorization� Given a matrix in dual SB form�
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the diagonal blocks of the matrix constitute the independent subblocks and can be fac�
tored independently� Thus �rst phase is composed of factoring Bk and the associated
coupling columns in Ck concurrently� so that
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So� in permuting a given matrix A into a dual SB form� minimizing the number
of coupling columns minimizes the work on the second phase of the algorithm� and
equal�sized blocks provide load balance for the �rst phase�

�� Preliminaries�

���� Graph Partitioning� An undirected graph G��V� E� is de�ned as a set of
vertices V and a set of edges E � Every edge eij �E connects a pair of distinct vertices
vi and vj � We use the notation Adj�vi� to denote the set of vertices adjacent to vertex
vi in graph G� We extend this operator to include the adjacency set of a vertex subset
V� � V� i�e�� Adj�V�� � fvj � V�V� � vj �Adj�vi� for some vi � V�g� The degree di
of a vertex vi is equal to the number of edges incident to vi� i�e�� di� jAdj�vi�j� An
edge subset ES is a K�way edge separator if its removal disconnects the graph into
at least K connected components� A vertex subset VS is a K�way vertex separator if
the subgraph induced by the vertices in V�VS has at least K connected components�

�GPES � fV��V�� � � � �VKg is a K�way vertex partition of G by edge separator
ES �E if the following conditions hold� Vk�V and Vk ��� for ��k� K� Vk 	 V���
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for � � k � � � K�
SK

k�� Vk�V� Note that all edges between the vertices of di�erent
parts belong to ES � Edges in ES are called cut �external� edges and all other edges
are called uncut �internal� edges� In a partition �GPES of G� a vertex is said to be a
boundary vertex if it is incident to a cut edge� The cutsize de�nition for representing
the cost of a partition �GPES is

cost��GPES � �
X

eij�ES

wij������

where each cut edge eij � �vi� vj� contributes its weight wij to the cost� Hence� the
K�way GPES problem can be de�ned as the task of dividing a graph into K parts
such that the cutsize is minimized� while a given balance criterion on part sizes is
maintained�

�GPV S�fV��V�� � � � �VK �VSg is a K�way vertex partition of G by vertex separator
VS �V if the following conditions hold� Vk�V and Vk ��� for ��k� K� Vk	V���
for �� k� ��K and Vk	VS � � for �� k�K�

SK

k��Vk
VS � V� the removal of VS
gives K disconnected parts V��V�� � � � �VK �i�e�� Adj�Vk��VS for ��k�K�� A vertex
vi�Vk is said to be a boundary vertex of part Vk if it is adjacent to a vertex in VS �
A vertex separator is said to be narrow if no subset of it forms a separator� and wide
otherwise� The cost of a partition �GPV S is

cost��GPV S � � jVS j ����	�

Hence� the K�way GPVS problem can be de�ned as the task of �nding aK�way vertex
separator of minimum size� while maintaining a given balance criterion on the sizes
of the K parts� Both GPES and GPVS problems are known to be NP�hard ��
�

As mentioned earlier� indirect GPVS approaches �rst perform a GPES on the
given graph to minimize the number of cut edges �i�e�� wij�� in ������ and then take
the boundary vertices as the wide separator to be re�ned to a narrow separator� The
wide�to�narrow re�nement problem is described as a minimum vertex cover problem
on the subgraph induced by the cut edges ���
� A minimum vertex cover is taken as a
narrow separator for the whole graph� since each cut edge will be adjacent to a vertex
in the vertex cover� That is� let VBk�Vk denote the set of boundary vertices of part
Vk in a partition �GPES�fV�� � � � �VKg of a given graph G��V� E� by edge separator
ES � E � Then� K�ES� � �VB � 
Kk��VBk� ES� denotes the K�partite subgraph of G
induced by ES � A vertex cover VS �
Kk��VSk on K�ES� constitutes a K�way GPVS
�GPV S � fV��VS�� � � � �VK�VSK �VSg of G� where VSk� VBk denotes the subset of
boundary vertices of part Vk that belong to the vertex cover of K�ES�� A minimum
vertex cover VS of K�ES� corresponds to an optimal re�nement of the wide separator
VB into a narrow separator VS under the assumption that each boundary vertex is
adjacent to at least one non�boundary vertex in �GPES �see Section �����

���� Hypergraph Partitioning� A hypergraph H��U �N � is de�ned as a set
of nodes �vertices� U and a set of nets �hyperedges� N among those vertices� We refer
to the vertices of H as nodes to avoid the confusion between graphs and hypergraphs�
Every net ni � N is a subset of nodes� i�e�� ni�U � The nodes in a net ni are called
its pins and denoted as Pins�ni�� We extend this operator to include the pin list of a
net subset N ��N � i�e�� Pins�N ���

S
ni�N � Pins�ni�� The size si of a net ni is equal

to the number of its pins� i�e�� si� jPins�ni�j� The set of nets connected to a node uj
is denoted as Nets�uj�� We also extend this operator to include the net list of a node
subset U ��U � i�e�� Nets�U ���

S
uj�U � Nets�uj�� The degree dj of a node uj is equal

to the number of nets it is connected to� i�e�� dj� jNets�uj�j� The total number p of
pins denote the size of H where p�

P
ni�N

si�
P

uj�U
dj � Graph is a special instance

of hypergraph such that each net has exactly two pins�
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Fig� ���� Column�splitting process�

�HP �fU��U�� � � � �UKg is a K�way node partition of H if the following conditions

hold� Uk�U and Uk ��� for ��k� K� Uk 	U��� for ��k���K�
SK

k��Uk�U � In a
partition �HP of H� a net that has at least one pin �node� in a part is said to connect
that part� Connectivity set  i of a net ni is de�ned as the set of parts connected by
ni� Connectivity �i� j ij of a net ni denotes the number of parts connected by ni�
A net ni is said to be cut �external� if it connects more than one part �i�e�� �i � ���
and uncut �internal� otherwise �i�e�� �j � ��� A net ni is said to be an internal net of
a part Uk if it connects only part Uk� i�e��  i�fUkg which also means Pins�ni�� Uk�
The set of internal nets of a part Uk is denoted as Nk� for k��� � � � �K� and the set
of external nets of a partition �HP is denoted as NS � So� although �HP is de�ned
as a K�way partition on the node set of H� it can also be considered as inducing a
�K
���way partition fN�� � � � �NK�NSg on the net set� NS can be considered as a
net separator whose removal gives K disconnected node parts U�� � � � �UK as well as
K disconnected net parts N�� � � � �NK � Two cutsize de�nitions widely used in VLSI
community ���
 for representing the cost of a partition �HP are�

�a� cost��HP � � jNS j and �b� cost��HP � �
X

ni�NS

��i � ��������

Hence� the K�way HP problem can be de�ned as the task of dividing a hypergraph
intoK parts such that the cutsize is minimized� while a given balance criterion among
part sizes is maintained� The HP problem is known to be NP�hard ���
�

���� Column�Splitting Method for ADB�to�ASB Transformation� In the
second phase of FH algorithm ���
� ADB is transformed into an SB form through the
column�splitting technique used in stochastic programming to treat anticipativity ���
�
In this technique� we consider the variables corresponding to the linking columns�
Consider a linking column cj in submatrix C��CT

� � � � CT
k � � � CT

K DT �T of ADB �
and let  j denote the set of Ck�s that have at least one nonzero in column cj � The
nonzeros of a linking column cj is split into j jj�� columns such that each new
column includes nonzeros in rows of only one block� That is� we introduce one copy
ckj of column cj for each block Ck �  j to decouple Ck from all other blocks in  j on

variable xj� so that ckj is permuted to be a column of Bk� Then� we add j jj�� coupling

constraints as coupling rows into ADB that force these variables fxkj � Ck �  jg all to
be equal� Note that this splitting process for column cj increases both the row and
column dimensions of matrix ASB by j jj��� Fig� ��� depicts the column�splitting
process on the ADB matrix obtained in Fig� ��	b�
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Fig� ���� �a� Bipartite graph representation BA of the sample A matrix given in Fig� ��� and
��way partitioning �GPV S of BA by vertex separator	 �b� ��way DB form ADB of A induced by
�GPV S�

�� Bipartite Graph Model for A�to�ADB Transformation� In this section�
we show that the A�to�ADB transformation problem can be described as a GPVS
problem on the bipartite graph representation of A� In the bipartite graph model�
M�N matrix A� �aij� is represented as a bipartite graph BA � �V �R 
 C� E� on
M
N vertices with the number of edges equal to the number of nonzeros in A� Each
row and column of A is represented by a vertex in BA so that vertex sets R and
C representing the rows and columns of A� respectively� form the vertex bipartition
V�R
C with jRj�M and jCj�N � There exists an edge between a row vertex ri�R
and a column vertex cj �C if and only if the respective matrix entry aij is nonzero�
So� Adj�ri� and Adj�cj � e�ectively represent the sets of columns and rows that have
nonzeros in row i and column j� respectively� Fig� ��	a displays the bipartite graph
representation of the sample matrix given in Fig� ����

Consider a K�way partition �GPV S�fV�� � � � �VK �VSg of BA� where Vk�Rk
Ck
for k��� � � � �K and VS �RS 
 CS with Rk�RS � R and Ck� CS � C� �GPV S can be
decoded as a partial permutation on the rows and columns of A to induce a permuted
matrix A� � In this permutation� the rows and columns associated with the vertices in
Rk�� and Ck�� are ordered after the rows and columns associated with the vertices
in Rk and Ck� for k � �� � � � �K � �� where the rows and columns associated with the
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vertices in RS and CS are ordered last as the coupling rows and linking columns�
respectively� That is� a row vertex ri � Vk corresponds to permuting row i of A
to the kth row slice A�

k� � �A�
k� � � � A�

kK A�
kS� of A

�� and ri � VS corresponds to
permuting row i of A to the row border A�

S���A
�
S� � � � A

�
SK A�

SS� of A
� � Similarly� a

column vertex cj�Vk corresponds to permuting column j of A to the kth column slice

A�
�k �

�
�A�

�k�
T � � � �A�

Kk�
T �A�

Sk�
T

T

of A� � and cj � VS corresponds to permuting

column j of A to the column border A�
�S�

�
�A�

�S�
T � � � �A�

KS �
T �A�

SS �
T

T

of A� �
Consider a row vertex ri�Rk and a column vertex cj�Ck of part Vk of a partition

�GPV S of BA� Since Adj�ri�� Ck
CS� ri�Rk corresponds to permuting all nonzeros
of row i of A into either submatrix A�

kk or submatrices A
�
kk and A�

kS depending on
ri being a non�boundary or a boundary vertex of Vk� respectively� So� all nonzeros
in the kth row slice A�

k� of A
� will be con�ned to the A�

kk and A�
kS matrices� Since

Adj�cj�� Rk 
 RS � cj �Ck corresponds to permuting all nonzeros of column j of A
into either submatrix A�

kk or submatrices A
�
kk and A

�
Sk of A

� depending on cj being
a non�boundary or a boundary vertex of Vk� respectively� So� all nonzeros in the kth
column slice A�

�k of A
� will be con�ned to the A�

kk and A�
Sk matrices� Hence� A

�

will be in a DB form as shown in ���	� with A�
kk�Bk� A

�
kS �Ck and A�

Sk�Rk� for
k � �� � � � �K� and A�

SS �D� The number of coupling rows and linking columns in
A� is equal to� respectively� the number of row and column vertices in the separator
VS � i�e�� Mc� jRS j and N�� jCSj� So� in GPVS of BA� minimizing the separator size
according to ���	� corresponds to minimizing the sum of the number of coupling rows
and linking columns in A� � since jVS j� jRS j
jCS j�Mc
N�� The row and column
dimensions of the kth diagonal block Bk of A� is equal to� respectively� the number
of row and column vertices in part Vk� i�e�� Mk� jRkj and Nk� jCkj for k��� � � � �K�
So� the row�vertex and column�vertex counts of the parts fV�� � � � �VKg can be used
to maintain the required balance criterion on the dimensions of the diagonal blocks
fB�� � � � � BKg of A�� Fig� ��	a displays a ��way GPVS of BA� and Fig� ��	b shows a
corresponding partial permutation that transforms matrix A of Fig� ��� into a ��way
DB form ADB �

�� Greedy Heuristics for Indirect GPVS� In this section� we �rst propose a
heuristic model for �nding a better wide separator through GPES� Then� we propose
a heuristic method to �nd a good vertex cover of a K�partite graph for wide�to�
narrow separator re�nement from K�way GPES� Finally� we present our critique on
the optimality of the vertex�cover model on wide�to�narrow separator re�nement�

���� Finding a Good Wide Vertex Separator� Finding a good wide sepa�
rator is an important and di�cult step in indirect GPVS� In fact� the real di�culty is
in the de�nition of the goodness for the wide�separator� There are no certain metrics
for the goodness of a wide separator that will lead to a smaller narrow separator�
Minimizing the number of edges on the cut may be a desirable metric� because it cor�
responds to �nding better logical clusters of the given graph� Leiserson and Lewis ���

proposed minimizing the size of the wide separator as an alternative metric� Although
both metrics are valuable assets for the goodness of a wide separator� they do not
guarantee a narrow separator of smaller cardinality� For example� consider three dif�
ferent wide separators displayed in Fig� ���� The �rst one �Fig� ���a� has minimum
number of edges� and the second one �Fig� ���b� has minimum number of vertices on
the wide separator leading to narrow separators of size � and 	� respectively� The
third one �Fig� ���c� has neither minimum number of edges nor minimum number of
vertices� but it leads to a narrow separator of size ��
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(b)(a) (c)
Fig� ���� Three di
erent wide vertex separators�

Our basic observation is that all edges are not of equal importance for the goodness
of a wide separator� Edges incident to a vertex with high degree are less important�
since this vertex has a higher probability to be in a narrow separator� The example
given in Fig� ��� supports this argument� For this purpose� we propose an edge
weighting scheme� In this scheme� each edge of the graph is assigned a weight inversely
proportional to the degrees of its end�vertices� That is� each edge eij��vi� vj� of the
graph is assigned the weight

wij �
�

maxfdi� djg
�����

where di and dj denote the degrees of vertices vi and vj � respectively� Minimizing the
cutsize of this edge�weighted graph according to ����� is expected to produce good
wide separators for re�ning to narrow separators�

The general edge�weighting scheme in ����� can be used for A�to�ADB transfor�
mation through indirect GPVS on bipartite graph representation BA of matrix A�
However� this edge�weighting scheme needs special attention if indirect GPVS is to be
used in the �rst phase of a two�phase A�to�ASB transformation� As mentioned in Sec�
tion ���� a column vertex in the narrow separator of a GPVS of BA may induce multiple
coupling rows during the ADB�to�ASB transformation through the column�splitting
method� So� in two�phase approaches� favoring row vertices to column vertices for
the narrow separator can be expected to produce a better ASB � This argument can
be extended to favoring row vertices to column vertices in the wide separator to be
obtained after GPES of BA� In this respect� we do not favor edges incident to a col�
umn vertex with a high degree to be on the cut of the GPES of BA� So� we propose
considering only the degrees of the row vertices in the edge weighting of BA for the
two�phase approaches� That is� each edge eij ��ri �R� cj �C� of BA��V �R
C� E�
is assigned the weight

wij �
�

di
���	�

where di denotes the degree of row vertex ri�

���� Wide�to�Narrow Separator Re�nement� A minimum vertex cover of
a bipartite graph can be computed optimally in polynomial time by �nding a max�
imum matching� by exploiting the duality between the two ���� ��� ��
� So� the
wide�to�narrow separator re�nement problem can be easily solved using this scheme
for 	�way indirect GPVS� because the edge separator of a 	�way GPES induces a
bipartite subgraph� This scheme has been widely exploited in a recursive manner
in the nested�dissection based K�way indirect GPVS for ordering symmetric sparse
matrices� because a 	�way GPES is adopted at each dissection step� In this work� we
exploit this scheme to obtain a wide vertex separator directly from a K�way GPES
in the A�to�ADB transformation stage of our two�phase approach� Because� the bi�
partite graph model BA for representing A in two�phase approaches ensures that the
subgraph induced by any edge separator of BA will also be a bipartite graph�
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The minimum vertex cover problem is known to be NP�hard on K�partite graphs
at least for K�� ���
� thus we need to resort to heuristics� Leiserson and Lewis ���

proposed two greedy heuristics for this purpose� namely minimum recovery �MR�
and maximum inclusion �MI�� The MR heuristic is based on iteratively removing
the vertex with minimum degree from the K�partite graph K�ES� and including all
vertices adjacent to that vertex to the vertex cover VS � The MI heuristic is based
on iteratively including the vertex with maximum degree into VS � In both heuristics�
all edges incident to the vertices included into VS are deleted from K�ES� so that the
degrees of the remaining vertices in K�ES� are updated accordingly� Both heuristics
continue the iterations until all edges are deleted from K�ES�� In this work� we
combine the advantages of these two heuristics in a new heuristic called one�recovery
and maximum�inclusion �OR�MI�� Each iteration of the OR�MI heuristic consists of
two stages� In the �rst stage� all vertices of degree one are removed from K�ES�
according to the MR heuristic� since this decision does not spoil our chance to �nd
a minimum vertex cover� In the second stage� the vertex with maximum degree is
included into VS according to the MI heuristic� The details of these heuristics can be
found in our previous work ���
�

���� Vertex�Cover Model� On the Optimality of Separator Re�nement�

For �K�	��way GPES based GPVS� it was stated ���
 that the minimumvertex cover
VS of the bipartite graph K�ES���VB�VB�
VB�� ES� induced by an edge separator
ES of GPES �GPES � �V��V�� of G is a smallest vertex separator of G corresponding
to ES � Recall that VBk denotes the set of boundary vertices of part Vk� Here� we
would like to discuss that this correspondence does not guarantee the optimality of
the wide�to�narrow separator re�nement� That is� the minimum vertex cover VS of
K�ES� may not constitute a minimum vertex separator that can be obtained from the
wide separator VB � We can classify the boundary vertices VBk of a part Vk as loosely�
bound and tightly�bound vertices� A loosely�bound vertex vi of VBk is not adjacent to
any non�boundary vertex of Vk� i�e�� Adj�vi�Vk��Adj�vi�	Vk�VBk�fvig� whereas a
tightly�bound vertex vj of VBk is adjacent to at least one non�boundary vertex of Vk�
i�e�� Adj�vj �Vk�VBk� ���� Each cut edge between two tightly�bound vertices should
always be covered by a vertex cover VS of K�ES� for VS to constitute a separator of G�
However� it is an unnecessarily severe measure to impose the same requirement for
a cut edge incident to at least one loosely�bound vertex� If all vertices in VBk
that are adjacent to a loosely�bound vertex vi � VBk are included into VS then
cut edges incident to vi need not to be covered� For example� Fig� ��	 illustrates
a 	�way GPES� where v� � VB� is a loosely�bound vertex and all other vertices are
tightly�bound vertices� Fig� ����a� and Fig� ����b� illustrate two optimal vertex covers
VS�fv�� v�� v�g and VS�fv�� v�� v�g� each of size �� on bipartite graph K�ES�� How�
ever� there is a wide�to�narrow separator re�nement VS �fv�� v�g of size 	 as shown
in Fig� ����c��

As mentioned in Section �� Liu�s narrow separator re�nement algorithm ���
 can
also be considered as exploiting the vertex cover model on the bipartite graph induced
by the edges between V� and VS �V� and VS� of a GPVS �GPV S �fV��V��VSg� So�
the discussion given here also applies to Liu�s narrow separator re�nement algorithm�
where loosely�bound vertices can only exist in the V� �V�� part of the bipartite graph�

The non�optimality of the minimum vertex�cover model has been overlooked
probably due to the unlikeliness of loosely�bound vertices in the GPVS of graphs
arising in �nite di�erence and �nite element applications�
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Fig� ���� A sample ��way GPES for wide�to�narrow separator re�nement�
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Fig� ���� �a� and �b� Two wide�to�narrow separator re�nements induced by two optimal vertex
covers	 �c� Optimal wide�to�narrow separator re�nement�

	� Hypergraph Model for A�to�ASB Transformation� In this section� we
show that A�to�ASB transformation can be described as an HP problem on a hy�
pergraph representation of A� In our previous works ��� �� ��� ��
� we proposed two
hypergraph models� namely row�net and column�net models� for representing rectan�
gular as well as symmetric and nonsymmetric square matrices� These two models are
duals of each other� The row�net representation of a matrix is equal to the column�
net representation of its transpose and vice�versa� Here� we will only describe and
discuss the row�net model for permuting a matrix A into a primal SB form� whereas
the column�net model can be used for permuting A into a dual SB form� Because of
the duality between the row�net and column�net models� permuting A into a dual SB
form using the column�net model on A is the same as permuting AT into a primal SB
from using the row�net model on AT �

In the �row�net� hypergraph model� anM�N matrix A��aij� is represented as a
hypergraph HA��U �N � on N nodes andM nets with the number of pins equal to the
number of nonzeros in matrixA� Node and net sets U andN correspond� respectively�
to the columns and rows of A� There exist one net ni and one node uj for each row i
and column j� respectively� Net ni � U contains the nodes corresponding to the
columns that have a nonzero entry in row i� i�e�� uj � ni if and only if aij ���� That
is� Pins�ni� e�ectively represents the set of columns that have a nonzero in row i of
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Fig� ���� �a� Row�net hypergraph representation HA of the sample A matrix shown in Fig� ���
and ��way partitioning �HP of HA	 �b� ��way SB form ASB of A induced by �HP �

A� and in a dual manner Nets�uj� represents the set of rows that have a nonzero in
column j of A� So� the size si of a net ni is equal to the number of nonzeros in row i
of A and the degree dj of a node uj is equal to the number of nonzeros in column j
of A� Fig� ����a� displays the hypergraph representation of the ����� sample matrix
given in Fig� ����

In our recent works ��� �
� we exploited the proposed row�net �column�net� model
for columnwise �rowwise� decomposition of sparse matrices for parallel matrix�vector
multiplication� In that application� nodes represent units of computation and nets
encode multiway data dependencies� In ��� �
� we showed that �D matrix partitioning
problem can be modeled as an HP problem in which the cutsize metric given in �����b�
is exactly equal to the parallel communication volume� The proposed HP model
overcomes the major �aws and limitations of the standard GPES models� which are
also addressed by Hendrickson and Kolda �	�� ��
� In this work� we show that the
A�to�ASB transformation problem can be described as an HP problem in which the
cutsize metric given in �����a� is exactly equal to the number of coupling rows in ASB �

Consider a K�way partition �HP � fU�� � � � �UKg � fN�� � � � �NK �NSg of HA�
�HP can be decoded as a partial permutation on the rows and columns of A to
induce a permuted matrix A� � In this permutation� the columns associated with the
nodes in Uk�� are ordered after the columns associated with the nodes in Uk� for k �
�� � � � �K � �� The rows associated with the internal nets �Nk��� of Uk�� are ordered
after the rows associated with the internal nets �Nk� of Uk� for k � �� � � � �K��� where
the rows associated with the external nets �NS� are ordered last as the coupling rows�
That is� a node uj�Uk corresponds to permuting column j of A to the kth column slice

A�
�k�

�
�A�

�k�
T � � � �A�

Kk�
T �A�

Sk�
T

T

of A�� An internal net ni of Uk corresponds to
permuting row i of A to the kth row slice A�

k���A
�
k� � � � A

�
kK� of A

� � and an external
net ni corresponds to permuting row i of A to the border A�

S��A
�
S� � � � A

�
SK� of A

� �
Consider an internal net ni �Nk of part Uk of a partition �GPV S of HA� Since

Pins�ni� � Uk� ni � Nk corresponds to permuting all nonzeros of row i of A into
submatrix A�

kk of A
� � So� all nonzeros in the kth row slice A�

k� will be con�ned to the
A�
kk submatrix� Consider a node uj of part Uk� Since Nets�uj�� Nk 
 NS � uj �Uk

corresponds to permuting all nonzeros of column j of A into either submatrix A�
kk

or submatrices A�
kk and A�

kS depending on uj being a non�boundary or a boundary
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node of Uk� respectively� So� all nonzeros in the kth column slice A�
�k will be con�ned

to the A�
kk and A�

Sk matrices� Hence� A
� will be in an SB form as shown in �����

with A�
kk�Bk and A

�
Sk�Rk� for k��� � � � �K� The number of coupling rows in A

� is
equal to the number of external nets� thus minimizing the cutsize according to �����a�
corresponds to minimizing the number of coupling rows in A� � The row and column
dimensions of the kth diagonal block Bk of A

� is equal to� respectively� the number of
internal nets and nodes in part Uk� i�e��Mk� jNkj and Nk� jUkj for k��� � � � �K� So�
the node and internal�net counts of the parts fU�� � � � �UKg can be used to maintain
the required balance criterion on the dimensions of the diagonal blocks fB�� � � � � BKg
of A� � Fig� ����a� displays a ��way partitioning �HP of HA and Fig� ����b� shows a
corresponding partial permutation which transforms A given in Fig� ��� directly into
a ��way SB form�


� Formulating HP Problem as a GPVS Problem� In this section� we �rst
summarize and criticize the previous work on alternative models proposed in the VLSI
community for solving the HP problem� Then� we describe our novel and accurate
GPVS�based formulation for the HP problem� Finally� we provide a discussion on the
matrix theoretical view of the relation between HP and GPVS problems�


��� Alternative Models for Solving HP Problem� As indicated in the
survey by Alpert and Kahng ��
� hypergraphs are commonly used to represent circuit
netlist connections in solving the circuit partitioning and placement problems in VLSI
layout design� The circuit partitioning problem is to divide a system speci�cation into
clusters to minimize inter�cluster connections� Other circuit representation models
were also proposed and used in the VLSI literature including dual hypergraph� clique�
net graph �CNG� and net�intersection graph �NIG� ��
� Hypergraphs represent circuits
in a natural way so that the circuit partitioning problem is directly described as an HP
problem� Thus� these alternative models can be considered as alternative approaches
for solving the HP problem�

The dual of a hypergraph H � �U �N � is de�ned as a hypergraph H�� where
the nodes and nets of H become� respectively� the nets and nodes of H�� That is�
H���U ��N �� with Nets�u�i��Pins�ni� for each u�i�U

� and ni �N � and Pins�n�j��
Nets�uj� for each n�j�N

� and uj�U �
In the CNG model� the vertex set of the target graph is equal to the node set of

the given hypergraph� Each net of the given hypergraph is represented by a clique of
vertices corresponding to its pins� The multiple edges connecting each pair of vertices
of the graph are contracted into a single edge� the weight of which is equal to the sum
of the weights of the edges it represents� If an edge is in the cut set of a GPES then
all nets represented by this edge are in the cut set of hypergraph partitioning� and
vice versa� Ideally� no matter how nodes of a net are partitioned� the contribution of
a cut net to the cutsize should always be one in a bipartition� However� the de�ciency
of the CNG representation is that it is impossible to achieve such a perfect weighting
of the edges as proved by Ihler et al� ���
�

In the NIG representation G � �V� E� of a given hypergraph H � �U �N �� each
vertex vi of G corresponds to net ni of H� Two vertices vi� vj�V of G are adjacent if
and only if respective nets ni� nj �N of H share at least one pin� i�e�� eij �E if and
only if Pins�ni� 	 Pins�nj� �� �� So�

Adj�vi� � fvj � nj � N � Pins�ni� 	 Pins�nj� �� �g������

Note that for a given hypergraph H� NIG G is well�de�ned� however there is no unique
reverse construction ��
�
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Both dual hypergraph and NIG models view the HP problem in terms of parti�
tioning nets instead of nodes� Kahng ���
 and Cong� Hagen� and Kahng ���
 exploited
this perspective of the NIG model to formulate the hypergraph bipartitioning problem
as a two�stage process� In the �rst stage� nets of H are bipartitioned through 	�way
GPES of its NIG G� The resulting net bipartition induces a partial node bipartition
on H� Because� the nodes �pins� that belong only to the nets on one side of the
bipartition can be unambigiuosly assigned to that side� However� other nodes may
belong to the nets on both sides of the bipartition� Thus� the second stage involves
�nding the best completion of the partial node bipartition� i�e�� a part assignment for
the shared nodes such that the cutsize ����� is minimized� This problem is known as
the module �node� contention problem in the VLSI community� Kahng ���
 used a
winner�loser heuristic �	�
� whereas Cong et al� ���
 used a matching�based �IG�match�
algorithm for solving the 	�way module contention problem optimally� Cong� Labio�
and Shivakumar ��	
 extended this approach to K�way HP through using the dual
hypergraph model� In the �rst stage� a K�way net partitioning is obtained through
partitioning the dual hypergraph� For the second stage� they formulated the K�way
module contention problem as a min�cost max��ow problem through de�ning binding
factors between nodes and nets� and a preference function between parts and nodes�

Here� we reveal the fact that the module contention problem encountered in the
second stage of the NIG�based hypergraph bipartitioning approaches ���� ��
 is similar
to the wide�to�narrow separator re�nement problem encountered in the second stage of
the indirect GPVS approaches widely used in nested�dissection based low��ll orderings
for sparse matrix factorization� The module contention and separator re�nement al�
gorithms e�ectively work on the bipartite graph induced by the cut edges of a two�way
GPES of the NIG representation of hypergraphs and the standard graph representa�
tion of sparse matrices� respectively� The winner�loser assignment heuristic �	�� ��

used by Kahng ���
 is very similar to the minimum�recovery heuristic proposed by
Leiserson and Lewis ���
 for separator re�nement� Similarly� the IG�match algorithm
proposed by Cong et al� ���
 is similar to the maximum�matching based minimum
vertex�cover algorithm ���� ��
 used by Pothen� Simon� and Liou ���
 for separator
re�nement� Despite not being stated in the literature� these net�bipartitioning based
HP algorithms using the NIG model can be viewed as trying to solve the HP problem
through an indirect GPVS of the NIG representation�


��� An Accurate Formulation of HP as GPVS on NIG Model� In this
work� we propose a net�partitioning based K�way HP algorithm that avoids the
module contention problem by showing that the HP problem can be described as
a GPVS problem through the NIG model� A K�way vertex partition �GPV S �
fV�� � � � �VK �VSg of NIG G by a vertex separator VS can be decoded as inducing
a �K
���way net partition fN�� � � � �NK �NSg on H� where Nk�Vk for k��� � � � �K
and NS � VS � By de�nition of GPVS� we have Adj�Vk� 	 V� � � for �� k � ��K�
This implies that Pins�Nk� 	 Pins�N�� � � for �� k � � �K� Because� if any two
nets ni �Nk and nj �N� shared at least one pin� then there would be an edge eij
between vertices vi�Vk and vj�V� in G� which would correspond to an edge between
parts Vk and V� of �GPV S contradicting the de�nition of GPVS� Thus� net partition
fN�� � � � �NK �NSg induces a K�way contention�free� partial node partition

��HP � fU ���Pins�N�� � � � � � U
�
K�Pins�NK �g����	�

Since U �k �Pins�Nk�� Nk corresponds to the set of internal nets of part U �k for k�
�� � � � �K� So� NS�VS constitutes a net cut for �

�
HP � The set U

�
F of remaining nodes
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satis�es Nets�U �F ��NS since

U �F � U �
K�
k��

U �k � U �
K�
k��

Pins�Nk� � fui � U � Nets�ui� � NSg������

The nodes in U �F are referred to here as the free nodes� because they can be freely
assigned to any part of ��HP without disturbing net cut NS � Consider any arbitrary
assignment of the nodes in U �F to the parts of ��HP to obtain a complete K�way
partition �HP �fU�� � � � �UKg� Since NS is a net cut of ��HP � the assignment of the
nodes of U �F cannot remove any net from the cut� Furthermore� since Nets�U �F ��NS �
all nets of the nodes of U �F are already in the net cut of ��HP � So� this arbitrary
assignment will not introduce any additional nets to the cut of �HP � Note that the
free nodes can easily be identi�ed in �HP as the the boundary nodes which are not
connected to any internal nets� Thus� �HP will be a K�way partition of H with
cutsize jNS j �����a� equal to the separator size jVS j ���	� of �GPV S of NIG G�

Fig� ����a� displays the NIG representation G of a sample hypergraph H shown
in Fig� ����a�� Fig� ����a� also displays a ��way GPVS �GPV S of G� Fig� ����a� shows
the ��way partitioning �HP of H induced by �GPV S of G with jNSj� jVS j��� Note
that �HP shown in Fig� ����a� contains no free nodes since each boundary node is
connected to at least one internal net�

The above mentioned equivalence between the HP and GPVS problems is a one
way equivalence in practice since there is no unique reverse hypergraph construction
from a given graph ��
� Furthermore� the proposed formulation of the K�way HP
problem as a K�way GPVS problem is not valid for the connectivity cutsize metric
given in �����b��

In the proposed formulation of the HP problem as a GPVS problem the NIG
model su�ers from information loss on the hypergraph nodes �H�nodes�� Hence� a
given balance criterion on the nodes of the hypergraph cannot be enforced during the
GPVS of the respective NIG� A straightforward solution to avoid this limitation of the
NIG model is to maintain the hypergraph together with the NIG during the GPVS
operation� However� this straightforward approach will su�er from both storage and
run�time ine�ciency� Here� we propose an approximate model for estimating the
number of H�nodes in each part of a partition of the NIG� As mentioned earlier�
the NIG model can also be viewed as a clique�node model since each node of the
hypergraph induces an edge between every net it is connected to� So� the edges of
the NIG implicitly represent the nodes of the hypergraph� where each H�node uh of
degree dh induces

�
dh
�



edges in the NIG� We assign a uniform weight of ��

�
dh
�



to

every clique edge induced by H�node uh� That is� we assign a weight wij to each edge
eij of the NIG� where

wij �
X

uh��ni�nj �

��
dh
�


�����

Consider a GPVS �GPV S � fV�� � � � �VK �VSg of NIG G representing a given hyper�
graph H� The sum Wk of the weights of the internal and external edges of each
part Vk in �GPV S will approximate the H�node count of part U �k in the correspond�
ing partial partition ��HP � fU

�
�� � � � �U

�
Kg of H� Edge�weight sum Wk of part Vk in

�GPV S will model the correct count for the non�boundary H�nodes of part U �k� and
even for the boundary H�nodes of U �k that are connected to only one cut net� Only the
boundary H�nodes that are connected to more than one cut net will introduce errors�
Consider a boundary H�node uh of part U �k with an external degree �h � dh� i�e�� uh
is connected to �h cut nets� Then� uh will contribute by an amount of � �

�
�h
�



�
�
dh
�



to Wk instead of �� So� edge�weight sum Wk of part Vk in �GPV S will be less than
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Fig� ���� �a� Net�intersection graph representation GNIG
HA� of hypergraph HA shown in
Fig� 
���a� and ��way partitioning �GPV S of GNIG
HA� by vertex separator	 �b� ��way DB form
of AAT induced by �GPV S�

the actual H�node count of part U �k in �
�
HP � As the edge�weight sums of di�erent

parts will involve similar errors� the proposed scheme can be expected to produce a
su�ciently good balance on the H�node counts of the parts of ��HP � The free nodes
in U �F can easily be exploited to improve the balance during the completion of partial
partition ��HP to �HP �


��� Matrix Theoretical View of the Relation Between HP and GPVS�

Let GNIG�HA�� �V� E� denote the NIG model for the row�net hypergraph represen�
tation HA � �U �N � of matrix A� By de�nition of the NIG model� the vertices of
GNIG will represent the rows of A� and eij �E if and only if Pins�ni�	Pins�nj� �� ��
Since Pins�ni� represents the set of columns that have a nonzero in row i of A�
Pins�ni� 	 Pins�nj� �� � corresponds to the condition that rows i and j of A have
a nonzero in at least one common column� Let Z � �zij� denote the M�M matrix
Z�AAT � Since zij ��ri� r

T
j �� zij will be nonzero if and only if eij �E � Hence� the

sparsity pattern of symmetric matrix Z will correspond to the adjacency matrix rep�
resentation of GNIG� In other words� GNIG will be equivalent to the standard graph
representation of symmetric matrix Z� i�e�� GNIG�HA�
GAAT � Note that although
vertex vi of GNIG represents only row i of A� it represents both row i and column i
of AAT in GAAT � A dual equivalence holds for the column�net hypergraph model of
A so that the NIG representation of the column�net model of A is equivalent to the
standard graph representation of symmetric matrix ATA�

Fig� ����a� displays the NIG representation GNIG�HA� of the row�net hyper�
graph model HA given in Fig� ����a� for the sample A�matrix in Fig� ���� Note
that GNIG�HA� corresponds to the standard graph representation of AA

T shown in
Fig� ����b�� The discussion given in Section � for bipartite graphs can easily be ex�
tended to show that the problem of transforming a symmetric matrix into a DB form
through symmetric row�column permutation can be modeled as a GPVS problem on
its standard graph representation� So� Fig� ����b� shows a ��way DB form of the AAT

matrix induced by the ��way GPVS �GPV S of GNIG�HA� shown in Fig� ����a�� Recall
that ��way partitioning �HP shown in Fig� ����a� is induced by �GPV S of GNIG�HA��
Hence� �GPV S induces the same SB form ASB of A as shown in Fig� ����b��



�� Aykanat� P�nar and C�ataly�urek

�� Graph and Hypergraph PartitioningAlgorithms and Tools� Recently�
multilevelGPES ��� 	�� 	�� ��� �	
 and HP ��� �� 	�� ��
 approaches have been proposed
leading to successful GPES tools Chaco �	�
� MeTiS ���
 and WGPP �		
� and HP
tools hMeTiS ���
 and PaToH ���
� These multilevel heuristics consist of � phases�
coarsening � initial partitioning � and uncoarsening� In the �rst phase� a multilevel
clustering is applied starting from the original graph�hypergraph by adopting various
matching heuristics until the number of vertices in the coarsened graph�hypergraph
reduces below a predetermined threshold value� Clustering corresponds to coalescing
highly interacting vertices to supernodes� In the second phase� a partition is obtained
on the coarsest graph�hypergraph using various heuristics including FM� which is an
iterative re�nement heuristic proposed for graph�hypergraph partitioning by Fiduccia
and Mattheyses ���
 as a faster implementation of the KL algorithm proposed by
Kernighan and Lin ���
� In the third phase� the partition found in the second phase
is successively projected back towards the original graph�hypergraph by re�ning the
projected partitions on the intermediate level uncoarser graphs�hypergraphs using
various heuristics including FM� In this work� we use direct K�way GPES version of
MeTiS ���
 �kmetis option ���
� in our indirect GPVS algorithms and our multilevel
HP tool PaToH ���
 in our one�phase A�toASB transformation approach�

One of the most important applications of GPVS is George�s nested�dissection
algorithm ���� ��
� which has been widely used for reordering of the rows�columns of
a symmetric� sparse� and positive de�nite matrix to reduce �ll in the factor matrices�
Here� GPVS is de�ned on the standard graph model of the given symmetric matrix�
The basic idea in the nested dissection algorithm is to reorder symmetric matrix into a
	�way DB form so that no �ll can occur in the o��diagonal blocks� The DB form of the
given matrix is obtained through a symmetric row�column permutation induced by
a 	�way GPVS� Then� both diagonal blocks are reordered by applying the dissection
strategy recursively� The performance of the nested�dissection reordering algorithm
depends on �nding small vertex separators at each dissection step� So� the nested�
dissection implementations can easily be exploited for obtaining a K�way DB form of
a matrix by terminating the dissection operation after lg�K recursion levels and then
gathering the vertex separators obtained at each dissection step to a single separator
constituting a K�way vertex separator� So� we obtain K�way DB forms of A and
AAT matrices in our two�phase and one�phase approaches by providing the bipartite
graph and net�intersection graph models� respectively� as inputs to a nested�dissection
based reordering tool� Note that in the former approach we e�ectively perform a
nonsymmetric nested dissection on the bipartite graph model of the rectangular A
matrix�

The multilevel GPES approaches have been used in several multilevel nested�
dissection implementations based on indirect 	�way GPVS� In this work� we use the
oemetis ordering code of MeTiS ���
 to compare against our edge�weighted indirect
GPVS algorithms� Recently� direct 	�way GPVS approaches have been embedded
into various multilevel nested�dissection implementations �		� 	�� ��
� In these im�
plementations� a 	�way GPVS obtained on the coarsest graph is re�ned during the
multilevel framework of the uncoarsening phase� Two distinct vertex�separator re�
�nement schemes were proposed and used for the uncoarsening phase� The �rst one
is the extension of the FM edge�separator re�nement approach to vertex�separator
re�nement as proposed by Ashcraft and Liu �	
� This scheme considers vertex moves
from vertex separator VS to both V� and V� in �GPV S � fV��V��VSg� This re�ne�
ment scheme is adopted in the onmetis ordering code of MeTiS ���
� ordering code of
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WGPP �		
� and the ordering code BEND �	�
� The second scheme is based on Liu�s
narrow separator re�nement algorithm ���
� which considers moving a set of vertices
simultaneously from VS at a time� in contrast to the FM�based re�nement scheme �	
�
which moves only one vertex at a time� Liu�s re�nement algorithm ���
 can be consid�
ered as repeatedly running the maximum�matching based vertex cover algorithm on
the bipartite graphs induced by the edges between V� and VS � and V� and VS � That
is� the wide vertex separator consisting of VS and the boundary vertices of V� �V��
is re�ned as in the GPES�based wide�to�narrow separator re�nement scheme� The
network��ow based minimumweighted vertex cover algorithms proposed by Ashcraft
and Liu ��
� and Hendrickson and Rothberg �	�
 enabled the use of Liu�s re�nement
approach ���
 on the coarse graphs within the multilevel framework� In this work� we
use the publicly available onmetis ordering code of MeTiS ���
 for direct GPVS�

�� Experimental Results� We have tested the performance of the proposed
models and associated solution approaches on a wide range of large LP constraint
matrices obtained from ���
 and ���
� Properties of these rectangular matrices are
presented in Table ���� where the matrices are listed in the order of increasing number
of rows� For each M�N rectangular A matrix� properties of the AAT matrix are
displayed as well� since the NIG model of the row�net hypergraph representation of
A corresponds to the standard graph representation of AAT �

Table ���

Properties of rectangular test matrices�

Rectangular matrix A AAT

number of number of nonzeros number nonzeros
name rows cols total per row per col total per row�col

M N max avg max avg max avg
NL �	�� ���� ���
� ��� ���� �� ��
� �	�	�� ��	 �����
CQ� �
�� ����� ����� ��	 ���� 
� ���� 

���	 �	� 

���
GE �		�� ��	�� ����� �� ���
 �� ���� ��
�
� ��� �	��	
CO� �	��� ����� �	���� ��	 ���� 
� ���� 
��
	� �	� 

��	
car� ����� ��	�
 ���
� ��� ���� �	� ���� ���		� �		 �����
fxm��� 

�		 �	��
 
����� �� ����
 
� ���	 �
���� �� 

���
fome�
 
�
�� ���
	 ��
�
� 

� ���� �� 
��� �
�	�� ��� �
���
pltexpA��� 
���� �	��� ���	�� �	 ���
 � 
�	� 
����� 
	� ��	�
kent ���		 ���
	 �����	 ��	 ���	 �� ����� ���	�	 
�
� 
����
world ���	� �
��� �����	 ��� ���� �� ��	
 ��
	�� ��� �����
mod
 ����� ���
� ����
� ��	 ���� �� ��
	 �	���	 ��	 ����	
lpl� ����� �
�			 ���
�� ��� ���� �� ��	� ���
�� ��� �
���
fxm���� ����	 ����
 ��	��� �� ���� �� ���� ����
� ��� ����


All experiments were performed on a workstation equipped with a ��� MHz Pow�
erPC processor with ��	�KB external cache and ���MB of memory� We have tested
K � �� �� and �� way partitioning of every test matrix� For each K value� K�way
partitioning of a test matrix constitutes a partitioning instance� Partitioning tools
MeTiS ���
 and PaToH ���
 were run �� times starting from di�erent random seeds
for each instance� We use averages of these runs for each instance in this section�
Fig� ��� displays K � �� �� and �� way sample primal SB forms of the GE matrix
obtained by PaToH�

As would be expected the breadth of this work led to an enormous amount of
experimental work� Here we will present only a portion of our experiments for the
clarity of the main results of this work� The organization of this section is as follows�
We �rst compare di�erent solution techniques for a model� Tables ��	���� present only



	� Aykanat� P�nar and C�ataly�urek

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nz = 39554
0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nz = 39554

�a� �b�

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nz = 39554
0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nz = 39554

�c� �d�

Fig� ���� Rectangular GE matrix with ����� rows and ����� columns� �a� original structure	
�b� ��way SB form	 �c� ��way SB form	 �d� �
�way SB form�

the averages over the �� matrices� Breakdown of the results for each matrix can be
found in ��
� Finally� we compare the e�ectiveness of the models for their best solution
technique� both in terms of solution quality �Tables �������� and pre�processing times
�Table �����

In the tables� !Mc denotes the percentage of the number of coupling rows in
both DB and primal SB forms� i�e�� !Mc � ����Mc�M � !N� denotes the num�
ber of linking columns in the DB forms as percents of the respective M values to
enable the comparison of the Mc and N� values under the same unit� i�e�� !N� �
����N��M � We measure the balance quality of the diagonal blocks in terms of per�
cent row imbalance !RI � �����Mmax�Mavg��� and percent column imbalance
!CI������Nmax�Navg���� Here� Mmax �Nmax� denotes the row �column� count of
the diagonal block with the maximum number of rows �columns� in both SB and DB
forms� Mavg ��M�Mc��K in both SB and DB forms� whereas Navg ��N�N���K
in DB forms and Navg�N�K in SB forms� It should be noted here that more com�
plicated balancing criteria might need to be maintained in practical applications� For
example� empirical relation T �M�N � � cM����N	�
� was reported by Medhi ���
 for



Permuting Sparse Rectangular Matrices into Block�Diagonal Form 	�

Table ���

Performance of di
erent techniques on the bipartite�graph model�

Indirect GPVS Direct GPVS
BG�model 
FH� wBG�model BG�model 
onmetis�

K ADB ASB ADB ASB ADB ASB
�Mc �N� �Mc �Mc �N� 
�N�

�
� �Mc �Mc �N� �Mc

� ���� 	�
	 ���	 ���� ��	
 
��	�� 
��� ���� 	�

 ���	
� ���	 	��� �	��	 
��� 
�	� 

���� ���� 
��� 	��� ���	

�� �
��� ��	� ����
 ���
 ���� 
��
�� ��
� ���� ���� ���	
Avg ���� 	��	 �	��� 
��� 
�	� 

���� ���� 
��� 	��� ���	

the solution time �with IMSL routine ZX�LP ���
� of an LP subproblem corresponding
to an M�N block diagonal� where c is some constant� Although our HP tool PaToH
can be modi�ed to handle such balancing criteria� it is hard to impose a balancing
criterion� which involves the product of M and N � into the existing GP tools�

Table ��	 presents the results of our experiments on the bipartite graph model for
both A�to�ADB transformation and two�phase A�to�ASB transformation� On the BG
model� we experimented with the built�in GPES tool kmetis of MeTiS for indirect
GPVS approaches and direct GPVS tool onmetis� Note that FH corresponds to our
implementation of the algorithm proposed by Ferris and Horn ���
� where we used
kmetis to partition the bipartite graph� In our weighted�BG �wBG� scheme� the
edges of the bipartite�graph are weighted according to ���	� and this edge�weighted
BG is provided to kmetis� Then the resulting GPES partition is converted to a GPVS
partition by using the maximum�matching based exact vertex�cover algorithm for
solving the K�way wide�to�narrow separator re�nement problem through exploiting
the bipartite nature of the graph� Since the GPES and GPVS solvers of MeTiS
maintain balance on vertices� balance on the sum of the row and column counts of
the diagonal blocks is explicitly maintained during partitioning� All three schemes
produce DB forms with comparable row and column imbalance values� As seen in
Table ��	� the proposed indirect wBG scheme ���	� produces substantially better DB
forms than the indirect FH scheme while approaching to the quality of direct onmetis
scheme� It is interesting to note that the direct BG�onmetis scheme produces DB
forms with wide row borders and narrow column borders in general� whereas the
indirect wBG scheme produces DB forms with comparable row and column border
sizes in general�

For the results of our wBG scheme� an additional !N �
� column in parenthesis

is displayed in Table ��	 to experimentally verify our observation in Section ����
Here� N �

� denotes the number of linking columns obtained after running the mini�
mum vertex�cover algorithm� and N� denotes the number of linking columns obtained
after removing the linking columns of connectivity � from the column borders of the
DB forms� This post�processing simply corresponds to identifying and removing ver�
tex v� from VS in Fig� ����a�� So� �N �

��N����Mc 
 N �
�� e�ectively denotes the ratio

of the number of redundant column vertices in the separator to the total number of
separator vertices� On average� 	��! of the separator vertices are identi�ed to be re�
dundant by our scheme� Table ��	 also displays the e�ect of column�splitting process
used in the second phase of two�phase approaches� In the table� �MSB

c �MDB
c ��N�

shows the average number of coupling rows induced by a linking column during the
ADB�to�ASB transformation� It can easily be derived from the table that a linking
column induces ��	�� ����� and ���� coupling rows in the FH� wBG and BG�onmetis
schemes� respectively� on average� This means that vertex separators found by these
schemes contain column vertices with small degree� e�g�� 	�	�� 	��� and 	����
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Table ���

Performance of di
erent techniques on the net�intersection�graph model�

Indirect GPVS Direct GPVS
NIG�model wNIG�model NIG�model
oemetis kmetis � OR�MI onmetis

K �Mc �RI �CI �Mc �RI �CI �Mc �RI �CI
� ���
 ��� ��	 
��	 ��� ���
 ���� ��� �
��
� ���� ���� ���� ���� ���
 ���� ���� ���� 
���

�� �	�
� 

�� �	�	 ���
 ���� 
��
 ���� 
��� ����
Avg ���� ���
 ���� ���� ���� ���� ���� ���	 
���

Table ��� presents the results of our experiments on the NIG model for one�
phase A�to�ASB transformation� On the NIG model� we experimented with built�
in GPVS tools in MeTiS �oemetis and onmetis in MeTiS� which are indirect and
direct methods� respectively� and our weighted�NIG �wNIG� scheme� In our wNIG
scheme� the edges of the net�intersection graph are weighted according to ������ and
this edge�weighted NIG is provided to GPES tool kmetis� Then the resulting GPES
partition is converted to a GPVS partition� using the proposed OR�MI heuristic for
K�way wide�to�narrow separator re�nement �OR�MI heuristic produced 	! smaller
separators than MR andMI heuristics on average�� Since the GPES and GPVS solvers
of MeTiS maintain balance on vertices� the balance criterion on the row counts of
the diagonal blocks were explicitly maintained during partitioning� The technique
proposed in Section ��	 need to be incorporated to the MeTiS package to explicitly
maintain balance on the column counts of the diagonal blocks� As seen in Table ����
the proposed indirect wNIG scheme and onmetis produce substantially better SB
forms than indirect oemetis scheme while wNIG scheme and onmetis are competitive�
with onmetis having the edge� Since the indirect oemetis scheme utilizes unit edge
weights� results support the validity of the edge weighting scheme for GPVS�

In our experiments with our hypergraph model� we have observed a signi�cant
sensitivity on the coarsening method employed� Although the coarsening algorithm
might be considered as an implementation choice� signi�cant a�ects on the perfor�
mance motivated us for a brief discussion to give some insight to the potential users
of this work and for the reproducibility of our experimental results� We should note
that move�based local improvement heuristics like FM might fail miserably when used
without the multilevel paradigm� due to very large net degrees� and a clever coarsen�
ing algorithm is crucial� Table ��� illustrates the performance comparison of two of
the most e�ective clustering schemes with balance criteria used in our PaToH imple�
mentation� In the table� ABSM and ABSC denote the randomized matching�based
and agglomerative clustering schemes used in the coarsening phase of PaToH� Both
ABSM and ABSC schemes use the absorption metric ��
 for vertex coalescing� Details
of these clustering schemes and other implementation details can be found in PaToH
manual ���
� For this work� we enhanced PaToH for maintaining di�erent balance cri�
teria� R�PaToH maintains balance on the number of internal nets of the parts during
partitioning� �R"C��PaToH maintains the balance on both the number of internal
nets and vertices of the parts during partitioning� �R
C��PaToH maintains balance
on the sum of internal net and vertex counts of the parts during partitioning� Note
that� in the row�net hypergraph model� balancing the internal net and vertex counts
of the parts correspond� respectively� to balancing the row and column counts of the
diagonal blocks of the resulting SB form�

As seen in Table ���� in R�PaToH�ABSC produces approximately ��! less number
of coupling rows than ABSM� on average� We have observed a similar quality di�er�
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Table ���

Performance of di
erent balancing criteria and clustering schemes in PaToH�

R�PaToH 
R�C��PaToH 
R�C��PaToH
K ABSM ABSC ABSC ABSC

�Mc �RI �CI �Mc �RI �CI �Mc �RI �CI �Mc �RI �CI
� ���� ��� ���� ���
 ��� ���	 ���
 ��
 �	�� ���� �	�� �	�

� ���� ���� 
��� ���� ���� 
��� ���� ���� ���
 ���� ���� ����

�� ���� 
��
 ���� ���� 
��� ���� ���� 
��� 
��� ���� 
��� 
���
Avg ���� ���	 
��	 ���� ���� 
��
 ���� ���� ���� ���� ���� ����

ence between ABSC and ABSM both in �R"C��PaToH and �R
C��PaToH� therefore
only ABSC results are displayed for the latter balancing schemes in the table� In
the comparison of di�erent balancing schemes using ABSC� R�PaToH performs bet�
ter than �R
C��PaToH� which performs better than �R"C��PaToH in terms of the
number of coupling rows� This observation can be explained by the decrease in the
size of the feasible solution space with increasing di�culty of the balancing criterion�

Tables ������� illustrate the performance comparison of di�erent schemes� all
proposed �except FH� in this paper� on A�to�ASB transformation� Table ��� and
Table ��� display the quality of SB forms in terms of border size �!Mc� and diagonal�
block imbalance �!RI and !CI�� respectively� whereas Table ��� displays the the
runtime performance of the algorithms� Since direct GPVS solvers perform better
than indirect GPVS solvers as displayed in Tables ��	 and ���� only the results of
direct GPVS solver onmetis are given in Tables �������� Similarly� ABSC clustering
results are presented for hypergraph partitionings with PaToH� The FH algorithm
e�ectively maintains the balance on the sum of the row and column counts of the
diagonal blocks� The proposed two�phase BG�onmetis scheme also works according
to the same balance criterion� because of the limitation of the direct GPVS solver
onmetis� Therefore for the sake of a common experimental framework� the results
of �R
C��PaToH� BG�onmetis� and FH schemes are grouped together in Tables ����
���� Similarly� the results of one�phase R�PaToH and NIG�onmetis schemes are also
grouped together�

As seen in Table ���� all of the proposed schemes perform signi�cantly better than
the FH algorithm� For example� the number of coupling rows of the SB forms produced
by the FH algorithm are � times larger than those of the �R
C��PaToH� on the overall
average� In �R
C��balancing� one�phase approach PaToH produces approximately
��! fewer coupling rows than two�phase approach BG�onmetis� on average� which
con�rms the e�ectiveness of the hypergraph model proposed for permuting rectangular
matrices into SB forms� In R�balancing� PaToH produces approximately �! fewer
coupling rows than NIG�onmetis� on average� However� out of the �� partitioning
instances� NIG�onmetis performs better in �� instances� whereas PaToH performs
better in �� instances� Recall that both schemes exploit the hypergraph model where
NIG�onmetis scheme is based on the proposed formulation of the HP problem as
a GPVS problem� As seen in the Table ���� the numbers of coupling rows of the
SB forms produced by PaToH remain below ��partitionings� in both �R
C� and R
balancing schemes� on average� As seen in Tables �������� our methods can �nd
balanced permutations� with very few coupling rows� which would lead to e�cient
parallel solutions�

Table ��� displays execution times of the partitioning algorithms� In two�phase
approaches� hypergraph and bipartite representation of a rectangular matrix are of
equal size� the number of nonzeros in the matrix� However� the clustering phase of an
HP tool involves more costly operations than those of a GP tool� Hence� two�phase
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Table ���

Overall performance comparison in A�to�ASB transformation�
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approaches using a GP tool is expected to run faster than the one�phase approach
using an HP tool� In �R
C��balancing� two�phase approach BG�onmetis runs faster
than PaToH in the partitioning of all test matrices except GE� car� and kent� Recall
that the NIG representation of the hypergraph model for a rectangular matrix A
corresponds to the standard graph representation of AAT � Thus� relative sizes of the
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Table ���

Balance quality in A�to�ASB transformation�
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� of Rows � � of Columns 
R�C� � of Rows 
R�

��phase 
�phase ��phase
H�model BG�model H�model

name K 
R�C��PaToH onmetis FH R�PaToH NIG�onmetis

�RI �CI �RI �CI �RI �CI �RI �CI �RI �CI
� ��� ��� ���� �
�
 ���� ���	 ��� ��� ���� ����

NL � ���	 ���� ���� ���� 
��� ���
 �	�	 ���� ���� ���	
�� ���� ���� 
��� 
��� 
��� 

�
 ���� ���� 
��	 
���
� ���	 

�� ���� ���� ���� ���� ��� �
�� ���� ���	

CQ� � 
��� ���	 
��� 
��� 

�� 
��	 �	�� ���� 
	�� ����
�� ���� ���� ���� 
��� 
��� 
��� ���� ���� 
��� ����
� ���� ���� ���� ���� ���� �
�� ���� ���
 ��� ���	

GE � 
��� ���� ���� 
	�	 ���	 ���� ���
 
��	 ���� 
��

�� 
��� 
��� 
��	 
��� 
��
 

�� 
��� �
�� 
��� �	��
� �	�� ���� ���� �
�� ���� ���� ���	 ���� ���� 
���

CO� � ���� 
��� 
��
 ���� 
	�� 
��� ���� ���
 ���� ����
�� 
��� ���	 �	�� 

�
 
��� 
��� 
��
 ���� 
��� ����
� 	�� 	�� ��� ��� 

�� 
��	 	�	 
�� 	�	 
��

car� � 	�� 
�	 �
�� ���� 	�� 
�� 	�	 	�	 	�	 ��	
�� 	�� ��� 
��� ���� 	�� ��� 	�	 �
�� ���	 
���
� �	�	 ��� 
�� 
�� ��	 ��� �	�� �	�� ��� ���

fxm��� � ���� ���� �	�� ���	 ���� ���� ���� ���� �	�� �	��
�� 
��
 

�� ���� 
	�
 ���� ���� 
��	 
��� ���
 ����
� 	�	 	�	 	�	 	�	 	�	 	�	 	�	 	�	 	�	 	�	

fome�
 � ��� ��� �
�� �	�� ���� ���� ��� ���� 
��� ����
�� ���� ���� 
��� 

�� 
��� ���� ���
 ���� ���
 ����
� ��� ��� 
�� ��
 ���� ���� ��� ��� ��	 ���

pltexpA��� � �
�� �	�� �	�
 �	�� ���� �
�� ���
 �	�� ���
 �	��
�� ���� ���	 ���
 ���
 ���� ���� ���	 ���	 
��� ����
� �
�
 ���� �
�� 
��� ���� 
��� ���� ���� ��
 ����

kent � ���� 
��� 
��� ���	 

�� ���� ���	 ���� ���� ����
�� 
��� ���� ���� ���� 
��� �
�� ���� �	�
 
��� �
��
� ��� ���� �	�� �	�	 �	�� �	�	 ��� ���� �	�	 �	�


world � ���� 
	�� ���� ���� ���� ���� 

�� 
��� 
	�� 
���
�� �	�� 
��� ���	 �	�� 

�� 
	�	 ���� ���� ���� ����
� ��� �	�� �	�� �	�� ���� �	�� ��� �	�� �	�� ����

mod
 � ���
 ���� ���� 
	�� ���	 ���� 
��� 
��� 
��� 
���
�� �	�
 
��� 
��� 
��� 

�	 
	�� �	�� ���� ���� ����
� ���� ��� ���� ��� ���� �
�� ���� 
	�� ��� ����

lpl� � ���� �
�	 ���� ���� 
��� ���� 
��� 
��	 ���� 
���
�� �	�� ���	 
��	 ���� ���� 
	�� �	�
 �	�� 
��� ����
� ���� �
�� 	�� 	�� ��� ��� �
�� �
�
 	�� 	��

fxm���� � ���� ���� ��� ��
 
�� ��� 

�� 
��� ��� ��

�� 
��� 
��� 
�� 
�� ��� ��� 
��� 
��� ��� 
��

Averages over K
� �	�� �	�
 ��� ��
 ���
 �
�� ��� ���	 ��� �
��
� ���� ���� ���� ���� ���
 ���� ���� 
��� ���� 
���

�� 
��� 
��� 
��� 
��� 
��� ���	 
��� ���� 
��� ����
all ���� ���� ���� ���
 ���� ���� ���� 
��
 ���	 
���

hypergraph and NIG models and hence relative execution times of GP and HP tools
depend on the relative sizes of A and AAT � Although NIG�onmetis runs faster than
PaToH in general in R�balancing� PaToH runs faster in all partitionings of the car�
and kent matrices� This is expected since car� and kent matrices have much less
nonzeros than their AAT matrices� as seen in Table ����
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Table ���

Execution times in seconds� Numbers in parentheses are normalized execution times with respect
to �R�C��PaToH
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Finally� we want to point that these runtimes are a�ordable when the solution
times of the LP problems are considered� LOQO ��	
 solves the lpl� problem� which
has the constraint matrix with the largest M�N product� in approximately ����
seconds� As seen in Table ���� the ���way partitioning times of all algorithms remain
below ��		! of the LOQO solution time in this LP problem�
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�
� Conclusion� We have investigated the problems of permuting a sparse rect�
angular matrixA into doubly�bordered �DB� and singly�bordered �SB� block�diagonal
formsADB andASB with minimumborder size while maintaining balance on the diag�
onal blocks� We showed that the A�to�ADB transformation problem can be described
as a graph�partitioning by vertex separator �GPVS� problem on the bipartite�graph
representation of matrix A� We proposed a hypergraph model for representing the
sparsity structure of A so that the A�to�ASB transformation problem can be for�
mulated as a hypergraph�partitioning �HP� problem� We proposed reducing the HP
problem to the GPVS problem via net�intersection graph representation of a hyper�
graph� This reduction also shows that the A�to�ASB transformation problem can be
modeled as a GPVS problem on the standard graph representation of the symmetric
matrix AAT � The performance of the proposed models and approaches depends on
the performance of the tools used to solve the associated problems as well as the
representation power of the models� We also presented a brief survey on the solution
techniques and tools for solving the stated problems� developed in di�erent societies�
Our experiments covered various techniques for each of the partitioning problems
through using state�of�the�art multilevel GP and HP tools MeTiS and PaToH�

We have also investigated indirect GPVS approaches� These approaches perform
a graph partitioning by edge separator �GPES� and take the boundary vertices as the
wide vertex separator to be re�ned to a narrow separator� We proposed a new edge�
weighting model so that minimizing the weighted edge cut through a GPES tool is
expected to produce a wide vertex separator with better quality for re�nement� Exper�
imental results showed that the proposed model leads to substantially smaller narrow
separators than the conventional indirect GPVS solver oemetis while approaching to
the quality of the direct GPVS solver onmetis� The proposed edge�weighting model
can also be exploited in the coarsening phase of the multilevel direct GPVS solvers�
We also presented a short discussion on the optimality of the wide�to�narrow separator
re�nement through minimum vertex cover model�

We explored the e�ectiveness of the proposed techniques on transforming general
Linear Programming �LP� problems into block�angular forms through permuting their
constraint matrices into SB forms� Experimental results on a large collection of LP
problems were impressive� and veri�ed that the underlying block�angular structures of
the LP problems can be e�ectively extracted to enable the use of the decomposition�
based techniques for coarse�grain parallel solution of general LP problems�
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